416 research outputs found

    Label Placement in Road Maps

    Full text link
    A road map can be interpreted as a graph embedded in the plane, in which each vertex corresponds to a road junction and each edge to a particular road section. We consider the cartographic problem to place non-overlapping road labels along the edges so that as many road sections as possible are identified by their name, i.e., covered by a label. We show that this is NP-hard in general, but the problem can be solved in polynomial time if the road map is an embedded tree.Comment: extended version of a CIAC 2015 pape

    An Algorithmic Framework for Labeling Road Maps

    Full text link
    Given an unlabeled road map, we consider, from an algorithmic perspective, the cartographic problem to place non-overlapping road labels embedded in their roads. We first decompose the road network into logically coherent road sections, e.g., parts of roads between two junctions. Based on this decomposition, we present and implement a new and versatile framework for placing labels in road maps such that the number of labeled road sections is maximized. In an experimental evaluation with road maps of 11 major cities we show that our proposed labeling algorithm is both fast in practice and that it reaches near-optimal solution quality, where optimal solutions are obtained by mixed-integer linear programming. In comparison to the standard OpenStreetMap renderer Mapnik, our algorithm labels 31% more road sections in average.Comment: extended version of a paper to appear at GIScience 201

    Planar Drawings of Fixed-Mobile Bigraphs

    Full text link
    A fixed-mobile bigraph G is a bipartite graph such that the vertices of one partition set are given with fixed positions in the plane and the mobile vertices of the other part, together with the edges, must be added to the drawing. We assume that G is planar and study the problem of finding, for a given k >= 0, a planar poly-line drawing of G with at most k bends per edge. In the most general case, we show NP-hardness. For k=0 and under additional constraints on the positions of the fixed or mobile vertices, we either prove that the problem is polynomial-time solvable or prove that it belongs to NP. Finally, we present a polynomial-time testing algorithm for a certain type of "layered" 1-bend drawings

    Quantifying the Loss of Coral from a Bleaching Event Using Underwater Photogrammetry and AI-Assisted Image Segmentation

    Get PDF
    Detecting the impacts of natural and anthropogenic disturbances that cause declines in organisms or changes in community composition has long been a focus of ecology. However, a tradeoff often exists between the spatial extent over which relevant data can be collected, and the resolution of those data. Recent advances in underwater photogrammetry, as well as computer vision and machine learning tools that employ artificial intelligence (AI), offer potential solutions with which to resolve this tradeoff. Here, we coupled a rigorous photogrammetric survey method with novel AI-assisted image segmentation software in order to quantify the impact of a coral bleaching event on a tropical reef, both at an ecologically meaningful spatial scale and with high spatial resolution. In addition to outlining our workflow, we highlight three key results: (1) dramatic changes in the three-dimensional surface areas of live and dead coral, as well as the ratio of live to dead colonies before and after bleaching; (2) a size-dependent pattern of mortality in bleached corals, where the largest corals were disproportionately affected, and (3) a significantly greater decline in the surface area of live coral, as revealed by our approximation of the 3D shape compared to the more standard planar area (2D) approach. The technique of photogrammetry allows us to turn 2D images into approximate 3D models in a flexible and efficient way. Increasing the resolution, accuracy, spatial extent, and efficiency with which we can quantify effects of disturbances will improve our ability to understand the ecological consequences that cascade from small to large scales, as well as allow more informed decisions to be made regarding the mitigation of undesired impacts

    Association of HbA1c Values with Mortality and Cardiovascular Events in Diabetic Dialysis Patients. The INVOR Study and Review of the Literature

    Get PDF
    BACKGROUND: Improved glycemic control reduces complications in patients with diabetes mellitus (DM). However, it is discussed controversially whether patients with diabetes mellitus and end-stage renal disease benefit from strict glycemic control. METHODS: We followed 78 patients with DM initiating dialysis treatment of the region of Vorarlberg in a prospective cohort study applying a time-dependent Cox regression analysis using all measured laboratory values for up to more than seven years. This resulted in 880 HbA(1c) measurements (with one measurement every 3.16 patient months on average) during the entire observation period. Non-linear P-splines were used to allow flexible modeling of the association with mortality and cardiovascular disease (CVD) events. RESULTS: We observed a decreased mortality risk with increasing HbA(1c) values (HR = 0.72 per 1% increase, p = 0.024). Adjustment for age and sex and additional adjustment for other CVD risk factors only slightly attenuated the association (HR = 0.71, p = 0.044). A non-linear P-spline showed that the association did not follow a fully linear pattern with a highly significant non-linear component (p = 0.001) with an increased risk of all-cause mortality for HbA(1c) values up to 6-7%. Causes of death were associated with HbA(1c) values. The risk for CVD events, however, increased with increasing HbA(1c) values (HR = 1.24 per 1% increase, p = 0.048) but vanished after extended adjustments. CONCLUSIONS: This study considered the entire information collected on HbA(1c) over a period of more than seven years. Besides the methodological advantages our data indicate a significant inverse association between HbA(1c) levels and all-cause mortality. However, for CVD events no significant association could be found
    corecore